April 28, 2015

Bridges and viaducts


Viaduct „Modruš1“ is the first and the longest in the row of three viaducts of the same name at the road section Ogulin- Brinje of the Highway A1 Zagreb-Split- Dubrovnik, at approach to the tunnel Mala Kapela. The object is situated near the settlement and the ruin of the old town of Modruš which once was also the seat of the Modruška County and can be seen from the right side when driving toward Brinje. The viaduct bridges a deep valley at the height up to 50 m from the lowest point of the valley and has a total length of 516 m and a total width of 31.5 m, enabling thus in standard profile the traffic on highway in both driving directions. Due to that many drivers even do not notice that they have crossed over a remarkable road construction building. In order to get an impression of the size of this viaduct one should exit to a parallel state road D23. The construction actually consists of two parallel, almost identical viaducts each serving one driving direction, which are transversally interconnected for the purpose of checking and maintenance. The levelling line of the viaduct is ascending 4.8% toward the tunnel Mala Kapela. The viaduct consists of 13 sections with centre-to-centre distances of the props (pillars): 38+11x40+38m = 516m. Particular construction spans consist of four prestressed ferroconcrete pillars with coffer cross-section, 2.2 m high and 37 m long, interconnected with a roadway slab. Particular span constructions lean on beam heads of pillars, by means of separate bearings.
The lower structure of the viaduct consists of abutments and pillars based on laminated ferroconcrete foundations, in consideration of rocky basic grounds. The foundations of pillars are 10.0x8.0x2.0 m. The abutments with parallel wings are based in the similar way. The pillars of the viaduct are hollow, of outer cross-section of 2.4 x5.4 m and with the wall thickness of 0.3 m. Used materials are ferroconcrete and prestressed concrete.
The project of the viaduct was made by IGH-Institute for Concrete and Masonry Structures, the designers were Gordana Trogrlić-Uzelac, Stjepan Kralj and Dr. Sc. Petar Sesar. It was built by the company Bechtel-Enka with participation of Croatian companies. The viaduct was opened for traffic in 2005 on the occasion of opening of the A1 Zagreb- Split Highway.


The River Krka, a jewel among rivers of the Adriatic drainage area, probably the most beautiful and attractive among them and well known for its waterfalls, was bridged when the A1 Highway was built, at a point few kilometres downstream from the town of Skradin by an impressive arch bridge. The bridge is located between the nods Skradin and Šibenik, and immediately behind it there is a rest area with a restaurant and viewpoint, from where the view of the bridge and the town of Skradin can be enjoyed. Especially attractive is the view at the bridge for yachtsmen heading to Skradin. The total length of the bridge is 391 m, the width is 22.5 m and it rises 66 meters above the sea level. The main span construction of the bridge over the river Krka is a hollow ferroconcrete arch of 204 m, i.e. 4 m bigger than the bridge of Maslenica (200 m). The cross-section of the arch is 3x10m, with the walls of 0.5 m. As much as 2988 m3 of concrete and 747 t of reinforcement have been built into the bridge, which was constructed according to cantilever principle and with cable support. The structure of the bridge above arch is composed of the grid of steel longitudinal and cross beams with cantilever projections and with rim beams. The longitudinal beams are coffered with cross-section of 0.75x1.7 m and a span of 32 i.e. 28 m. On the described grid a ferroconcrete slab of roadway of 25 cm has been laid. The described structure above arch contains 1700 tonnes of steel, 2172 m3 of concrete and 630 tonnes of reinforcement and it leans on the terrain and the arch of the bridge, by means of pillars reaching up to 55 m. The pillars are of hollow cross-section varying from 3.2x2.5 to 1.8x2.2 m in dependence of their height. Each pillar position has two equal pillars.
It should be pointed out that in the construction of this bridge rational technical solutions have been applied which have made possible – by respecting all prescribed conditions - a savings on the total mass of the object of 35 % in relation to almost identical Maslenica bridge.
The designer of the bridge was Dr. sc .Zlatko Šavor, the supervisor was IGH Zagreb - Dr.sc. Z. Marić, and the bridge was built in the period 2002- 2005 by the company “Konstruktor inženjering Inc.” from Split with the steel part built by the company “Đuro Đaković Ltd.” from Slavonski Brod. The bridge was opened to traffic together with the opening to traffic of the highway Zagreb –Split in 2005.

Stamp Issue: 2015.04.23

March 2, 2015


Reason and inspiration
The Bridges stamp issue celebrates the leaps in engineering that have seen the UK’s bridges evolve from humble stone crossings to dramatic symbolic landmarks conceived by progressive architects. The stamp images feature British bridges constructed from a wide range of different materials, including gritstone, limestone, cast iron, wrought iron and steel, while referencing diverse styles of bridge engineering, from clapper and stone arch to suspension and bowstring girder.

Stamp details
Designed by London agency GBH, the ten photographic stamps from locations spanning the whole UK, are arranged chronologically: pre-1600 – Tarr Steps, River Barle; 1700s – Row Bridge, Mosedale Beck; c.1774 – Pulteney Bridge, River Avon; 1814 – Craigellachie Bridge, River Spey; 1826 – Menai Suspension Bridge, Menai Strait; 1849 – High Level Bridge, River Tyne; 1850 – Royal Border Bridge, River Tweed; 1911 – Tees Transporter Bridge, River Tees; 1981 – Humber Bridge, River Humber; 2011 – Peace Bridge, River Foyle.

The origins of Tarr Steps, which crosses the River Barle in Exmoor National Park, are not definitively known. It has long been suggested that the structure could be up to 3,000 years old, but recent research reveals it is most likely to date from the 15th or 16th century. Tarr Steps is a most elemental bridge formed by large slabs of gritstone – weighing up to 2 tons each and varying in length from 2 to 2.9 metres – placed flat on broad, low piers made from blocks of stone. Comprising 17 spans, the 55-metre bridge is held together by weight with no system of fixings or mortar. Serious flood damage over the years has resulted in substantial rebuilding and repairing of the original stones, but Tarr Steps remains an outstanding example of clapper-bridge construction.

Believed to have been constructed in the mid 18th century, this packhorse bridge over Mosedale Beck at Wasdale Head in Cumbria is a fine example of a type of bridge common in Western Europe in the Middle Ages. Goods were often carried in panniers slung from packhorses, so bridges on trade routes could be narrow, making them quick and cheap to build. The relative lightness of the loads carried by this type of bridge – simply single rows of packhorses – meant that their forms could be daring, with added strength given to the material used through bold and ingenious design. Typically, as with Row Bridge, they were conceived as high semi-circular or segmental stone-built arches (an inherently strong form), often crossing a river or chasm in one slender span.

Designed by the esteemed Scottish architect Robert Adam, Pulteney Bridge in Bath is the UK’s finest example of an ‘inhabited’ bridge. Completed by 1774, it contains shops, originally with accommodation above, and was built to link the ancient centre of Bath with the proposed new Bathwick estate on the opposite bank of the River Avon. Adam based his structure on an unbuilt design by the great 16th-century architect Andrea Palladio, which the Italian had entered into a competition to build a bridge at the Rialto in Venice. Though Palladio’s scheme was not selected, it was published and became an inspiration for 18th-century architects such as Adam, whose resulting creation, made from mellow Bath stone, with its three semi-circular arches and pedimented centre pavilion, is one of the most beautiful classical bridges in the world.

Designed by Thomas Telford and completed in 1814, Craigellachie Bridge carries the roadway on a single 46-metre-long arched span over the River Spey in Moray, Scotland.
Telford had the arch made of cast iron, which was revolutionary at the time because, unlike masonry, only iron could achieve the single long, slender and shallow arch required. The components were cast at a Welsh foundry in controlled conditions to ensure high quality and delivered to the site for assembly. Cast iron is very strong in compression but has low tensile strength, making it ideal for columns but not for beams. Well aware of the metal’s structural limitations, Telford built the bridge ensuring that the maximum number of its components are in compression. The span of the arch is restrained by masonry towers, designed in picturesque manner to look like miniature castles.

Completed in 1826 to Thomas Telford’s design, the Menai Suspension Bridge linking the island of Anglesey to the Welsh mainland remains one of the most breathtaking bridges ever built in Britain.
The central span of its roadway, 176.5 metres long and set 30 metres above water level to allow tall-masted ships to pass beneath, was carried by 16 wrought-iron chains (since replaced by steel chains).
The road on either side of the central span is supported by tall and elegant arched limestone viaducts. With a total length of 305 metres, this was the world’s first great suspension bridge and established the potential of suspension-bridge technology to achieve both high and lengthy spans.

Linking Newcastle-upon-Tyne with Gateshead, the High Level Bridge is one of the most innovative and visually powerful bridges created during Britain’s Railway Age.
This two-tier 408-metre-long bridge, designed by Robert Stephenson to carry road and rail traffic at a high level across the Tyne and allow tall-masted shipping below, is a hymn to the strength, utility and robust beauty of cast iron, used in combination with stone and wrought iron. The tall piers, up to 40 metres high, are made of local sandstone, which possesses great compressive strength and is able to withstand damp, while the iron bow-string girders forming the spans of the bridge (the widest being 38.1 metres) use cast iron for components that are in compression and wrought iron for elements that require tensile strength.

Crossing the River Tweed between Berwick-upon-Tweed and Tweedmouth, the Royal Border Bridge was constructed between 1847 and 1850 to the design of Robert Stephenson and was a key component in Britain’s expanding railway system, linking London to Edinburgh.
Of traditional masonry construction, the bridge is essentially a railway viaduct formed of 28 semi-circular-headed arches, each with a span of 18 metres, with the total length of the bridge – including approach works – reaching 658 metres. This vast extent, combined with the majestic 38-metre height of the arches as they cross the river and the slender form of the vertical piers, from which the arches spring, gives the structure a striking elegance. A superb piece of functional engineering, it is also a work of great beauty that complements the rugged border landscape through which it passes.

Completed in 1911, the Tees Transporter Bridge in Middlesbrough is a most novel and visually arresting piece of engineering. Vast in scale and utilitarian in appearance, its stripped-back, lattice-steel structure incorporates a pair of cantilevered trusses that span 259 metres – with a clearance above water of almost 49 metres – that are used to carry a ‘gondola’ across the river. Powered by electric motors, the gondola – which can convey both people and vehicles – is suspended above the river and pulled from one side to the other by a hauling cable in approximately two minutes. This unique design – executed by Sir William Arrol & Co. of Glasgow – was economic to construct and ensured that the crossing would not interfere with river traffic.

More than a century after the notion of a bridge or tunnel crossing the Humber estuary had first been debated, the eventual completion of the Humber Bridge in 1981 redefined the boundaries for suspension-bridge technology.
Its complex construction, by consulting engineers Freeman Fox & Partners, took nine years. With a total length of 2,220 metres and a central span of 1,410 metres between two towers of reinforced concrete, for 16 years the Humber Bridge was the longest single-span suspension bridge in the world. Its mighty scale, elegant minimal form and the fact that it leaps across one of England’s great natural boundaries has captured the imagination. The poet Philip Larkin, who lived in Kingston-upon-Hull, wrote ‘Bridge for the Living’, a poem that was set to music to celebrate the opening of the Humber Bridge.

Spanning the River Foyle in Derry/Londonderry in Northern Ireland, the Peace Bridge functions not only as an urban route, but also as a work of art. Its ingenuity is expressed through delicacy and elegance.
This unique bridge, constructed for pedestrians and cyclists, was conceived as two distinct structural systems that work in absolute harmony. Completed in 2011 to the designs of Wilkinson Eyre, the Peace Bridge features a pair of tall masts, whose system of cables overlap mid-river to form a symbolic structural ‘handshake’ across the Foyle. The 235-metre-long pathway of this self-anchored suspension bridge provides a promenade and makes connections, while evoking a sense of pride, place and unity.

Stamp Issue: 2015.03.05

May 16, 2014

Historical Bridge

Kesik Bridge (Sivas): Kesik Bridge is one of the best examples of Anatolian Seljukian architecture tradition, located over Kizilirmak in the route of Ancient Sivas-Kayseri road and was built by Seljukian State in 1292. The bridge has a length of 326,36 meters and width of 4,95 meters; the bridge is completely built with cut stones. The biggest arch span is 7,90 meters long. The bridge consists of two parts; its Sivas side has 17 niches and its Kayseri side has 2 niches.

 Clandiras Bridge (Usak): Clandiras Bridge is an important passage between the past and the future constructed in the area of Phrygians, located over Banaz Stream in Karahalli district of Usak province. The bridge is approximately 2500 years old. Bridge which has a structure with pulley shaped arch with one niche, has a width of 1,75 meters and length of 24 meters and depth of 17 meters. The stone surfaces of the bridge constructed over the strong stones and placed on semi-waist of the rocks of the mountain are engraved and big stones of the arches are clamped into each other.

Stamp Issue: 2014.04.10

February 8, 2014

Bridges bring together II

The Principality of Liechtenstein and its neighbour Switzerland are joined by several bridges over the Rhine, the border river. In the second part of the “Bridges bring together” series Philately Liechtenstein turns its attention to the “Foot and Cycle Bridge” (CHF 0.85) “Buchs-Schaan“ (CHF 1.00) and also the “Rhine Bridge” (CHF 1.40) “Bendern-Haag“ (CHF 1.90).

Until well into the 19th century the Rhine could be crossed only on ferries. These crossings were not without danger: in 1587 85 people from Werdenberg drowned in a ferry accident on the way home after a pilgrimage to the Church of St. Mary in Bendern. In 1868 the first bridge was built at the Rhine crossing between Bendern (Liechtenstein) and Haag (Switzerland). It was burned down in 1894, whereupon a new wooden bridge was erected in 1896. This one collapsed in 1974 after another fire. Fortunately the concrete bridge of today depicted on the commemoratives was built in 1965, so that the transport link between the two countries operated without interruption at the time of the disaster.

Since the spring of 2009 pedestrians and cyclists in the Rhine local recreation area have enjoyed an attractive link between Schaan (Liechtenstein) and Buchs (Switzerland). The 132-metres long bridge weighing 120 tonnes is suspended over the water on two transversely positioned steel pylons. The bridge itself is, so to speak, a welcome spinoff from a much larger construction project, for it represents the visible heart of an otherwise underground steam pipeline. This just six kilometres long pipeline supplies three industrial undertakings in Liechtenstein with process steam from the refuse incineration plant in Buchs. The annual supply of some 100 tonnes of steam is equivalent to about 12 million litres of heating oil and contributes every year to the avoidance of 20,000 tonnes of CO2.

Source: Liechtenstein Post

Stamp Issue: 2014.03.10

February 7, 2014

Bridges bring together

It is not yet 150 years since Liechtenstein and Switzerland, the two countries separated by the Rhine as border-marking river, were first brought together by shared bridges.
Before that people and goods were conveyed between the Liechtenstein and Swiss banks of the Rhine by ferries, five of which were still operating at the beginning of the 19th century. Only after physical structures controlling the course of the Rhine had been put in place was it possible in 1867-68 to build the first wooden bridges, at that time still uncovered, between Bendern and Haag and between Schaan and Buchs. The first part of the “Bridges bring together” series illustrates in greater detail two of these bridges, which have since been a characterizing feature of the Rhine valley.

The “Old Rhine bridge” (CHF 0.85) between Vaduz and Sevelen (“Vaduz-Sevelen”, face value CHF 1.00), which used to be the main link between Vaduz and neighbouring Switzerland, was built in 1870-1871. After it had had to be raised twice in the following years, in 1900-1901 it was re-built on the piers of its predecessor. Since the mid 1970s the Old Rhine bridge has been accessible only to non-motorized traffic.

The last major renovation was completed in 2010. The “Railway bridge” (face value CHF 1.40) between “Schaan-Buchs” (face value CHF 1.90), which later became a subsection of the famous “Orient Express”, was first crossed in 1872 by a train drawn by a steam locomotive belonging to the “Vorarlberg Railway”. In the devastating flood disaster of 1927 the section of the bridge on the Liechtenstein side plunged into the water. In 1934-35 the present-day 190-metre-long steel bridge was erected on the river pier of the collapsed bridge. The stamps’ face designs are based on photographs by Bruno Kopfli from Eschen.

Source: Liechtenstein Post

Stamp Issue: 2013.06.03

February 3, 2014

Oresund Bridge

The Øresund or Öresund Bridge is a combined two-track rail and four-lane road bridge-tunnel across the Öresund strait. It is the longest combined road and rail bridge in Europe and connects the two metropolitan areas of the Öresund Region: the Danish capital of Copenhagen and the Swedish city of Malmö. The international European route E20 runs across the bridge and through the tunnel via the two lane motorway, as does the Öresund Railway Line. The construction of the Great Belt Fixed Link and the Øresund have connected mainland Europe to Sweden and the rest of Scandinavia. The bridge was designed by the Danish architectural practice Dissing+Weitling.

The reason for incurring the additional cost and complexity of building a tunnel instead of another section of bridge is to avoid obstructing aircraft from nearby Copenhagen Airport and to provide a clear path for shipping. The bridge crosses the border between Denmark and Sweden, but due to the Schengen Agreement and the Nordic Passport Union there are no passport controls. There are frequent customs checks at the toll booths for those entering Sweden but not for those entering Denmark.

Stamp Issue: 2000.05.09

Painting - Danmark 1989

The Northern Drawbridge to the Citadel in Copenhagen, 1837, Christen Købke

 This view is from the Citadel of Copenhagen towards one of the bridges of the moat. The artist lived with his family in the Citadel until 1833 and this canvas may have been painted as a souvenir for Købke's mother, the first recorded owner of the picture. It was preceded by a detailed drawing and an oil sketch, both of which survive. They show that the artist made slight alterations in the final painting, adding the two soldiers who are shown fishing on the far bank of the moat, and omitting a tree on the right.

Christen Schiellerup Købke (26 May 1810 – 7 February 1848), Danish painter, was born in Copenhagen to Peter Berendt Købke, a baker, and his wife Cecilie Margrete. He was one of 11 children. Købke is one of the best known artists belonging to the Golden Age of Danish Painting.

Stamp Issue: 1989.11.10

January 11, 2014

Verrazano-Narrows Bridge

Majestic, graceful, powerful — the Verrazano-Narrows Bridge is a breathtaking sight visible from vantage points in all five of New York City’s boroughs. The bridge celebrates its 50th anniversary in 2014, which the U.S. Postal Service commemorates with this new Priority Mail stamp.
The digital illustration on the stamp captures the grandeur of the Verrazano, not only showing its sheer size and scale, but also giving a sense of the sweeping curve of the double-decker roadway. The artist chose to showcase the bridge at twilight, which offers an interesting play of light and shadow.

Named for explorer Giovanni da Verrazzano, the first European to enter New York Bay, the bridge spans the Narrows, the strait dividing Upper and Lower New York Bay, and connects Brooklyn and Staten Island. The bridge’s two massive towers support four enormous cables that each weighs more than 9,000 tons. From each cable hang 262 suspender ropes that hold up the double-decker roadway. Each deck carries six lanes of traffic.

The bridge’s center span is 4,260 feet long—so long that its two monumental towers, soaring 690 feet into the sky, are spaced one-and-five-eighths inches farther apart at their tops than at their bases to compensate for the curvature of the earth.

At time of the opening of the upper deck on November 21, 1964, it was the longest suspension bridge in the world. (The lower deck opened five years later.)

Designed by art director Phil Jordan, the stamp features a digital illustration created by Dan Cosgrove.

Stamp Issue: 2014

Arlington Green Bridge

The scenic Arlington Green Bridge in Bennington County, Vermont, takes center stage in this Priority Mail stamp. One of the most-photographed covered bridges in the state, it was built in 1852.

The digital stamp art depicts the red wooden bridge against a backdrop of autumn leaves. On the far side of the bridge, a white church steeple rises from a traditional village green. The bridge spans the Batten Kill trout stream in Arlington, just off Route 313 in southern Vermont. Although it stretches 80 feet across the stream, the bridge’s roadbed is only wide enough to allow one lane of traffic to rumble over its wooden planks at a time.

Stamp Issue: 2013.01.25

Sunshine Skyway Bridge

The U.S. Postal Service recognized the 25th anniversary of Florida's Sunshine Skyway Bridge by issuing the $5.15 Sunshine Skyway Bridge Priority Mail stamp. In the stamp artwork, the bridge rises from Tampa Bay's vivid blue water and is silhouetted against an orange sky. Tiny vehicles on the roadbed reveal the massive scale of this engineering marvel.

The new Sunshine Skyway bridge started with a disaster and concluded with the world's most beautiful bridge. The collision and loss of life which occurred on May 9, 1980, created an opportunity to build a new bridge which memorialized the 35 people who lost their lives that day; engaged state of the art design, engineering and construction and unified the Tampa Bay communities to create what is now the signature of Tampa Bay.

Construction began on the new bridge began two years after the tragedy. The new bridge featured on the stamp is one of the first major concrete-and-steel, cable-stayed bridges in the United States. Completed in 1987, the main bridge and approach spans stretch more than four miles across Tampa Bay and link the Gulf Coast communities surrounding St. Petersburg and Bradenton.

To many people the 42 brilliant yellow cables look like sails and their two supporting pylons like masts rising from the water. Engineers designed the cable-stayed section of the new bridge to soar 190 feet above the water to allow unhindered navigation to and from the busy port of Tampa.

Setting new standards for technical innovation and esthetics, the structural design is considered by many to be a modern masterpiece. Renamed in 2005 after the former governor who envisioned its construction, the Bob Graham/Sunshine Skyway Bridge has been the recipient of dozens of engineering and design awards.

The stamp, designed by Carl T. Hermann of North Las Vegas, NV, showcases a digital illustration created by artist Dan Cosgrove of Chicago, IL.

Stamp Issue: 2012.04.28